Extensions 1→N→G→Q→1 with N=C32 and Q=Q83S3

Direct product G=N×Q with N=C32 and Q=Q83S3
dρLabelID
C32×Q83S3144C3^2xQ8:3S3432,707

Semidirect products G=N:Q with N=C32 and Q=Q83S3
extensionφ:Q→Aut NdρLabelID
C321(Q83S3) = C12.84S32φ: Q83S3/C4D6 ⊆ Aut C32726C3^2:1(Q8:3S3)432,296
C322(Q83S3) = C12.S32φ: Q83S3/C4D6 ⊆ Aut C327212-C3^2:2(Q8:3S3)432,299
C323(Q83S3) = (Q8×He3)⋊C2φ: Q83S3/Q8S3 ⊆ Aut C327212+C3^2:3(Q8:3S3)432,369
C324(Q83S3) = He35D4⋊C2φ: Q83S3/Q8S3 ⊆ Aut C32726C3^2:4(Q8:3S3)432,395
C325(Q83S3) = Dic3.S32φ: Q83S3/Dic3C22 ⊆ Aut C32248+C3^2:5(Q8:3S3)432,612
C326(Q83S3) = C12.39S32φ: Q83S3/C12C22 ⊆ Aut C3272C3^2:6(Q8:3S3)432,664
C327(Q83S3) = C12.40S32φ: Q83S3/C12C22 ⊆ Aut C3272C3^2:7(Q8:3S3)432,665
C328(Q83S3) = C12⋊S312S3φ: Q83S3/C12C22 ⊆ Aut C32484C3^2:8(Q8:3S3)432,688
C329(Q83S3) = D6.3S32φ: Q83S3/D6C22 ⊆ Aut C32248+C3^2:9(Q8:3S3)432,609
C3210(Q83S3) = D6.6S32φ: Q83S3/D6C22 ⊆ Aut C32488-C3^2:10(Q8:3S3)432,611
C3211(Q83S3) = C3×D6.6D6φ: Q83S3/C4×S3C2 ⊆ Aut C32484C3^2:11(Q8:3S3)432,647
C3212(Q83S3) = C12.58S32φ: Q83S3/C4×S3C2 ⊆ Aut C3272C3^2:12(Q8:3S3)432,669
C3213(Q83S3) = C3×D12⋊S3φ: Q83S3/D12C2 ⊆ Aut C32484C3^2:13(Q8:3S3)432,644
C3214(Q83S3) = D12⋊(C3⋊S3)φ: Q83S3/D12C2 ⊆ Aut C3272C3^2:14(Q8:3S3)432,662
C3215(Q83S3) = C3×C12.26D6φ: Q83S3/C3×Q8C2 ⊆ Aut C32144C3^2:15(Q8:3S3)432,717
C3216(Q83S3) = (Q8×C33)⋊C2φ: Q83S3/C3×Q8C2 ⊆ Aut C32216C3^2:16(Q8:3S3)432,727

Non-split extensions G=N.Q with N=C32 and Q=Q83S3
extensionφ:Q→Aut NdρLabelID
C32.(Q83S3) = D363C6φ: Q83S3/Q8S3 ⊆ Aut C327212+C3^2.(Q8:3S3)432,371
C32.2(Q83S3) = D18.D6φ: Q83S3/C12C22 ⊆ Aut C32724C3^2.2(Q8:3S3)432,281
C32.3(Q83S3) = Dic65D9φ: Q83S3/C12C22 ⊆ Aut C32724+C3^2.3(Q8:3S3)432,282
C32.4(Q83S3) = C3×Q83D9φ: Q83S3/C3×Q8C2 ⊆ Aut C321444C3^2.4(Q8:3S3)432,365
C32.5(Q83S3) = C36.29D6φ: Q83S3/C3×Q8C2 ⊆ Aut C32216C3^2.5(Q8:3S3)432,393

׿
×
𝔽